Negative Volterra Flows and Mixed Volterra Flows and Their Infinitely Many Conservation Laws
نویسنده
چکیده
In this article, by means of considering an isospectral operator equation which corresponds to the Volterra lattice, and constructing opportune time evolution problems with negative powers of spectral parameter, and using discrete zero curvature representation, negative Volterra flows are proposed. We also propose the mixed Volterra flows, which come from positive and negative volterra flows. From the Lax representation, we demonstrate the existence of infinitely many conservation laws for the two flows and give the corresponding conserved densities and the associated fluxes formulaically. Thus their integrability is further confirmed.
منابع مشابه
Two New Integrable Lattice Hierarchies Associated With A Discrete Schrödinger Nonisospectral Problem and Their Infinitely Many Conservation Laws
In this article, by means of using discrete zero curvature representation and constructing opportune time evolution problems, two new discrete integrable lattice hierarchies with ndependent coefficients are proposed, which related to a new discrete Schrödinger nonisospectral operator equation. The relation of the two new lattice hierarchies with the Volterra hierarchy is discussed. It has been ...
متن کاملNegative Volterra Flows
Taking the standard zero curvature approach we derive an infinite set of inte-grable equations, which taken together form the negative Volterra hierarchy. The resulting equations turn out to be nonlocal, which is usual for the negative flows. However, in some cases the nonlocality can be eliminated. Studying the combined action of both positive (classical) and negative Volterra flows, i.e. cons...
متن کاملLenard scheme for two dimensional periodic Volterra chain
We prove that for compatible weakly nonlocal Hamiltonian and symplectic operators, hierarchies of infinitely many commuting local symmetries and conservation laws can be generated under some easily verified conditions no matter whether the generating Nijenhuis operators are weakly nonlocal or not. We construct a recursion operator of the two dimensional periodic Volterra chain from its Lax repr...
متن کاملA computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
متن کاملVariational identities and applications to Hamiltonian structures of soliton equations
This is an introductory report concerning our recent research on Hamiltonian structures. We will discuss variational identities associated with continuous and discrete spectral problems, and their applications to Hamiltonian structures of soliton equations. Our illustrative examples are the AKNS hierarchy and the Volterra lattice hierarchy associated with semisimple Lie algebras, and two hierar...
متن کامل